Теплоизоляция труб.
Теплоизоляция труб предназначена для уменьшения потерь тепла в трубопроводах и тепловых сетях, а так же для поддержания заданной температуры теплоносителя. Теплоизоляцию труб используют в качестве защиты от образования высоких температур на поверхности труб, теплопроводов, оборудования.
Уменьшение транспортных потерь тепла является главнейшим средством экономии топлива. Учитывая сравнительно небольшие затраты на теплоизоляцию труб (5...8% от капитала вложений в строительство тепловых сетей), очень важным в вопросах сохранения транспортируемого тепла по трубам является их покрытие высококачественными и эффективными теплоизоляционными материалами.
Теплоизоляционные материалы и конструкции непосредственно контактируют с окружающей средой, характеризующейся колебаниями температуры, влажности, а при подземных прокладках - агрессивными действиями грунтовых вод по отношению к поверхности труб.
Характеристики материала для теплоизоляции труб.
Теплоизоляционные конструкции изготавливают из специальных материалов, главное свойство которых малая теплопроводность. Различают три группы материалов в зависимости от теплопроводности:
- Низкой теплопроводности до 0,06 Вт/(мв°С) при средней температуре материала в конструкции 25°С и не более 0,08 Вт/(м*°С) при 125°С.
- Средней теплопроводности 0,06.. 0,115 Вт/(м-°С) при 25°С и 0,08.. .0,14 Вт/(мв°С) при 125°С.
- Повышенной теплопроводности 0,115...ОД75 Вт/(м-°С) при 25°С и 0,14 .0,21 Вт/(м-°С) при 125°С.
В соответствии с требованиями для основного слоя теплоизоляционных конструкций для всех видов прокладок кроме бесканальной, следует применять материалы со средней плотностью не более 400 кг/м3, и теплопроводностью не более 0,07 Вт/(м*°С) при температуре материала 25°С. При бесканальной прокладке - соответственно не более 600 кг/м3 и 0,13 Вт/(мв°С).
Другим важным свойством теплоизоляционных материалов является их устойчивость к действию температур до 200°С, при этом они не теряют своих физических свойств и структуры.
Материалы используемый для теплоизоляции труб не должны разлагаться с выделением вредных веществ, а также веществ, способствующих коррозии поверхности труб и оборудования (кислоты, щелочи, агрессивные газы, сернистые соединения .) По этой причине для изготовления тепловой изоляции не допускается применение котельных шлаков, содержащих в своем составе сернистые соединения.
Также важным свойством является водопоглощение и гидрофобность(водоотталкивание). Увлажнение тепловой изоляции резко повышает ее коэффициент
теплопроводности вследствие вытеснения воздуха водой. Кроме того, растворенные в воде кислород и углекислота способствуют коррозии наружной поверхности труб и оборудования.
Воздухопроницаемость теплоизоляционного материала также необходимо учитывать при проектировании и изготовлении тепло изоляционной конструкции, которая должна обладать соответствующей герметичностью, не допуская проникновения влажного воздуха.
Теплоизоляционные материалы также должны обладать повышенным электросопротивлением, не допускающим попадания блуждающих токов к поверхности
труб, особенно при бесканальных прокладках, что вызывает электрокоррозию труб.
Теплоизоляционные материалы должны быть достаточно биостойкими, те не подвергаться гниению, действию грызунов и изменениям структуры и свойств во времени.
Индустриальность в износостойкость теплоизоляционных конструкций является одним из главных характеристик теплоизоляционных материалов. Покрытие труб тепловой изоляции желательно осуществляться на заводах механизированным способом. Это существенно уменьшает трудозатраты, сроки монтажа и повышает качество теплоизоляционной конструкции. Изоляция стыковых соединений, оборудования, ответвлений и запорной арматуры должна производиться ранее заготовленными частями с механизированной сборкой на месте монтажа.
Теплотехнические свойства теплоизоляционных материалов ухудшаются при увеличении их плотности, поэтому минераловатные изделия не следует подвергать чрезмерному уплотнению. Детали крепления тепловой изоляции (бандажи, сетка, проволока, стяжки) должны применять из агрессивно стойких материалов или с соответствующим покрытием, противостоящим коррозии.
И, наконец, теплоизоляционные материалы и конструкции должны иметь невысокую стоимость, применение их должно быть экономически оправданным.
Необходимые материалы для теплоизоляции труб, а так же изделия и конструкции используемые при надземной и подземной прокладки труб в каналах.
Материалы для теплоизоляции труб.
Минеральная вата.
Основным теплоизоляционным материалом для теплоизоляции труб и оборудования теплосетей является минеральная вата и изделия из нее.
Минеральная вата представляет собой тонковолокнистый материал, получаемый из расплава горных пород, металлургических шлаков или их смеси. В частности, широкое применение находит базальтовая вата и изделия из нее.
Из минеральной ваты изготавливают путем уплотнения и добавки синтетических или органических (битум) связующих или прошивки синтетическими нитями различные маты, плиты, полуцилиндры, сегменты и шнуры.
Маты минераловатные прошивные изготавливают без обкладок и с обкладками из асбестовой ткани, стеклоткани, стекловолокнистого холста, гофрированного или кровельного картона; упаковочной или мешочной бумаги.
В зависимости от плотности различают жесткие, полужесткие и мягкие изделия. Из жестких материалов изготавливают цилиндры с разрезом по образующей, полуцилиндры для изоляции труб малых диаметров (до 250 мм) и сегменты - для труб диаметром более 250 мм. Для изоляции труб больших диаметров применяют маты вертикально слоистые, наклеенные на покровный материал, а также маты прошивные
из минеральной ваты на металлической сетке.
Для теплоизоляции труб на месте монтажа стыков, а также компенсаторов, запорной арматуры изготавливается шнур теплоизоляционный из минеральной ваты, который представляет собой сетчатую трубку, как правило, из стеклоткани, плотно наполненную минеральной ватой. Теплопроводность изделий из минеральной ваты зависит от марки (по плотности) и колеблется в пределах 0,044...0,049 Вт/(м*°С) при температуре 25°С н 0,067. ..0,072 Вт/(м*°С) при температуре 125°С.
Стеклянная вата.
Стеклянная вата представляет собой тонковолокнистый материал, получаемый из расплавленной стеклянной шихты путем непрерывного вытягивания стекловолокна, а также центробежно фильерно-дутьевым способом. Из стеклянной ваты методом формования и склеивания синтетическими смолами изготавливают плиты и маты жесткие, полужесткие и мягкие. Изготавливаются также маты, плиты без связующего, прошивные стеклянной или синтетической нитью.
Величина коэффициента теплопроводности изделий из стекло ваты также зависит от плотности и колеблется в пределах 0,041...0,074 Вт/(м-°С)
Находят широкое применение в качестве оберточного и покровного материала холст стекловолокнистый (нетканый рулонный материал на синтетическом связующем)и полотно холсто-прошивное из отходов стекловолокна, представляющее собой многослойный холст, прошитый стеклонитями.
Вулканитовые изделия.
Вулканитовые изделия получают смешиванием диатомита, негашеной извести и асбеста, формованием и с обработкой в автоклавах. Изготавливают плиты, полуцилиндры и сегменты для изоляции трубопроводов Ду 50..400. Теплопроводность изделий от 0,077 Вт/(м*°С) при 25°С до 0,1 Вт/(м-°С)при 125°С. Известково-кремнистые материалы – тонкоизмельченная смесь негашеной извести, кремнеземистого материала (диаюмит, трепел, кварцевый песок) и асбеста Выпускают изделия также в виде плит, сегментов и полуцилиндров для изоляции трубопроводов Ду 200.. .400. Теплопроводность материала от 0,058 Вг/(м-°С) при 25°С до 0,077 Вт/(м*°С) при 125°С.
Изделия из перлита.
Перлит - пористый материал, получаемый при термической обработке вулканического стекла с включениями полевых шпатов, кварца, плагиоклазов.
Сырьем для получения вспученного перлита служат и другие силикатные породы вулканического происхождения (обсидиан, пемза, туфы и пр.). В виде щебня и песка перлит используется как заполнитель для приготовления теплоизоляционных бетонов и других теплоизоляционных изделий, как например, битумоперлит.
Смешивая перлитный песок с цементом и асбестом путем формования получают перлитоцементные изделия в виде полуцилиндров, плит и сегментов. Коэффициент теплопроводности от 0,058 Вт/(м*°С) при 25°С до 128 Вт/(м*°С) при 300°С.
Изделия из пенопластов.
Все более широкое применение в качестве основного теплоизоляционного слоя находят пенопласты. Пенопласты представляют собой пористый газонаполненный полимерный материал. Технология их изготовления основана на вспенивании полимеров газами, образующимися в результате химических реакций между отдельными смешивающимися компонентами. К пенопластам, допускаемым к применению для изоляции труб, следует отнести фенолформальдегидные пенопласты ФРП-1 и резопен, изготавливаемые из резольной смолы ФРВ-1А. Из этого материала изготавливаются цилиндры, полуцилиндры, сегменты, изолированные фасонные части марок ФРП-1 и резопен. Теплопроводность составляет 0,043...0,046 при 20°С.
Также перспективно применение пенополиуретановых материалов, получаемых в результате смешения различных полиэфиров, изоцианатов и вспенивающих добавок.
Нанесение ППУ производится на заводах путем заливки в формы или набрызга на поверхность труб. Изоляция стыков, фасонных частей, арматуры и др. возможна на месте монтажа трубопровода путем заливки в опалубки или в скорлупы жидкой вспененной массы с последующим быстрым твердением пеноизоляции.
Например, разработанная ВНИПИ энергопром пенополиуретановая гидро- теплоизоляция ППУ имеет коэффициент теплопроводности, равный 0,032
Вт/(м*°С) при плотности 40.. .90 кг/м3, наносится на трубы механизированным способом, при этом не требуется антикоррозийное покрытие. Наружный слой плотностью 150...400 кг/м3 с пределом прочности на сжатие 50 кг/см2 используется в качестве покровного слоя.
Теплоизоляционные конструкции.
Теплоизоляционные конструкции включают в себя защитное покрытие поверхности труб от коррозии, основной слой изоляции (несколько слоев) и защитное покрытие(покровный слой), предохраняющий основной слой теплоизоляции от механических повреждений, воздействия атмосферных осадков и агрессивных сред. К защитному покрытию относятся также средства и детали крепления покровного слоя и изоляции в целом.
Выбор защитного покрытия поверхности труб от коррозии производится в зависимости от способа прокладки, от вида агрессивных воздействий на поверхность и от конструкции тепловой изоляции. Наиболее распространенным являются масляно-битумные покрытия по грунту, а также покрытия изолом или бризолом по изольной мастике.
Весьма эффективным является стекло-эмалевое покрытие, состоящее из смеси кварцевого песка, полевого шпата, глинозема, буры и соды. Для повышения сцепления с металлом в состав вводят оксиды никеля, хрома, меди и другие добавки. Водный густой состав наносится на поверхность трубы, высушивается и оплавляется на поверхности трубы в кольцевом электромагнитном индукторе при температуре около 800°С. Стыковые соединения труб могут покрываться эмалью при помощи передвижных установок. Недорогим антикоррозийным средством является покрытие краской на эпоксидной смоле. Находят применение другие эпоксидные эмали. Для теплопроводов, находящихся в жестких температурно-влажностиых
условиях, весьма эффективна металлизация поверхности алюминием газотермическим способом. Алюминиевое покрытие наносится па поверхность трубы при помощи газопламенных или электродуговых аппаратов газовой или воздушной струей. Установка по металлизации алюминием может входить в поточно-механизированную линию по теплоизоляции труб. Перед нанесением антикоррозионного покрытия поверхность труб зачищается от коррозии и окалины механическими щетками или пескоструйными аппаратами и при необходимости обезжиривается органическими растворителями.
Полносборные теплоизоляционные конструкции.
Полносборные теплоизоляционные конструкции. Полносборные теплоизоляционные конструкции. Изоляция данных конструкций имеет наиболее индустриальный вид. Изготавливаются на заводе с антикоррозионной обработкой труб и с креплением покровного слоя поверх основного слоя изоляции. Изоляция стыков, фасонных частей, арматуры, компенсаторов и др. производится после монтажа всех элементов участка теплосети из заготовленных на заводе штучных теплоизоляционных изделий.Сборные комплектные теплоизоляционные конструкции представляют собой полный комплектный набор теплоизоляционных изделий, элементов покрытия и крепежных деталей по размерам и диаметрам.
Подвесные теплоизоляционные конструкции.
Подвесные теплоизоляционные конструкции - основной способ теплоизоляции труб надземной и подземной канальной прокладок. Выполняется из изделий минеральной
ваты, стекловаты, вулканитовых изделий, известково-кремниевых и других материалов. В приложениях 1 и 2 приведены допускаемые материалы для основного слоя изоляции в зависимости от способа прокладки теплосети.В настоящее время изготовление подвесных теплоизоляционных конструкций, как правило, осуществляется сборкой штучных заготовок с закреплением покровным слоем и деталями крепления. Сборка изоляционных конструкций на объекте монтажа из готовых элементов (сегментов, полос, матов, скорлуп и полуцилиндров) связана с большой затратой ручного труда.
При монтаже теплоизоляции из мягких материалов (плит, матов) при нанесении покровного слоя неизбежно уплотнение материала теплоизоляционного слоя. Это должно учитываться при расчете необходимого количества материала коэффициентом уплотнения. Для изоляции запорной арматуры находят применение съемные конструкции набивной изоляции в виде тюфяков, заполненных минеральной или стеклянной ватой, перлитом и другим теплоизоляционным материалом. Оболочка тюфяков изготавливается из стеклоткани. Покровный слой при надземной прокладке на открытом воздухе, как правило, выполняет функции защитного покрытия от проникновения атмосферной влаги. Используется фольгоизол, фоль- горубероид, армопластмассовые материалы, стеклотекстолит, стеклопластик, сталь листовая углеродистая и листовая оцинкованная, листы, ленты и фольга из алюминиевых сплавов. При прокладке в непроходных каналах используют более дешевые армопластмассовые материалы, стеклотекстолит, стеклопластик, стеклорубсроид, рубероид. В тоннелях допускается также применять фольгоизол, фольгорубсроид и алюминиевую фольгу дублированную. При выборе материала для защитного покрытия в зависимости от способа прокладки теплопроводов следует руководствоваться нормами.
Крепление покровного слоя из листового металла производят самонарезающими винтами, планками или бандажами из упаковочной ленты или лентами из алюминисвою сплава, оболочки из стеклопластика, фольги и других материалов, крепят бандажами из алюминиевой или упаковочной ленты, оцинкованной стальной ленты и проволоки. Покрытие из кровельной стали окрашивают красками стойкими к атмосферным явлениям.
Оберточные теплоизоляционные конструкции.
Оберточные конструкции выполняют из прошивных матов или из мягких плит на синтетической связке, которые сшивают поперечными и продольными швами. Покровный слой крепится так же, как и в подвесной изоляции. Оберточные конструкции в виде теплоизоляционных жгутов из минеральной или стеклянной ваты после наложения их на поверхность также покрывают защитным слоем. Изолируют стыки, фасонные части, арматуру. Мастичная изоляция применяется также для теплоизоляции на месте монтажа арматуры и оборудования. Применяют порошкообразные материалы: асбест, асбозурт, совелит. Замешенная на воде масса накладывается на предварительно нагретую изолируемую поверхность вручную. Применяется мастичная
изоляция редко, как правило, при ремонтных работах.
Бесканальная прокладка труб.
Применение бесканальных прокладок привлекаем более простой конструкцией и меньшей стоимостью по сравнению с прокладкой в каналах, однако, в этом случае требуется более тщательная гидроизоляция поверхности теплопровода вплоть до помещения изолированной трубы в герметичную оболочку. Существуют разные виды конструкции бесканальных прокладок:
- Засыпные.
- Монолитные (литые).
- В изолированных трубах с герметичными защитными оболочками.