Контакты Доставка
Аккаунт
Не зарегистрирован
Товары к сравнению еще не выбраны
ЦЕНТР СНАБЖЕНИЯ

строительными материалами и инженерным оборудованием
8 800 200 9778
Моя корзина
Корзина пока пуста
Товаров в корзине: 0
на сумму 0.00 р.
Корзина (товаров: 0)
Не зарегистрирован
Моя корзина
Корзина пока пуста
Товаров в корзине: 0
на сумму 0.00 р.
Корзина (0)
Подкатегории
Хиты продаж
«ЛАХТА® водяная пробка «Ультра»» 5 кг.
«ЛАХТА® водяная пробка «Ультра»» 5 кг.
1285.00 р.
В корзину
Купить за 1 клик
«ЛАХТА® водяная пробка» 5 кг.
«ЛАХТА® водяная пробка» 5 кг.
1109.00 р.
В корзину
Купить за 1 клик
«ЛАХТА® проникающая гидроизоляция» 25 кг.
«ЛАХТА® проникающая гидроизоляция» 25 кг.
5175.00 р.
В корзину
Купить за 1 клик

Теплоизоляция трубопроводов теплосетей

11.09.24 | Автор: Сами | Источник: Теплоизоляция трубопроводов теплосетей

Сведения по теплоизоляции трубопроводов и конструкциям, применяемым для тепловой изоляции. Применение для утепления труб в ППУ.

Требования предъявляемые к теплоизоляционным материалам и их свойства

Уменьшение транспортных потерь тепла является главнейшим средством экономии топлива Учитывая сравнительно небольшие затраты на теплоизоляцию трубопроводов (5...8% от капитала вложений в строительство тепловых сетей), очень важным в во­просах сохранения транспортируемого тепла по трубопроводам является их покрытие высококачественными и эффективными теплоизоляционными материалами.
Теплоизоляционные материалы и конструкции непосредственно контактируют с окружающей средой, характеризующейся колебаниями температуры, влажности, а при подземных прокладка - агрессивными действиями грунтовых вод по отношению к поверхности труб
Теплоизоляционные конструкции изготавливают из специальных материалов, главное свойство которых - малая теплопроводность Различают три группы материалов в зависимости от теплопроводности:
  • низкой теплопроводности до 0,06 Вт/(мв°С)
  • при средней температуре материала в конструкции 25°С и не более 0,08 Вт/(м*°С)
  • при 125°С; средней теплопроводности 0,06.. 0,115 Вт/(м-°С)
  • при 25°С и 0,08.. .0,14 Вт/(мв°С)
  • при 125°С; повышенной теплопроводности 0,115...ОД75 Вт/(м-°С)
  • при 25°С и 0,14 .0,21 Вт/(м-°С) при 125°С [1, с 45].

В соответствии с [3] для основного слоя теплоизоляционных кон­струкций для всех видов прокладок кроме бесканальной, следует применять материалы со средней плотностью не более 400 кг/м3, и теплопроводностью не более 0,07 Вт/(м*°С) при температуре мате­риала 25°С. При бесканальной прокладке - соответственно не более 600 кг/м3 и 0,13 Вт/(мв°С)

Другим важным свойством теплоизоляционных материалов является их устойчивость к действию температур до 200°С, при этом они не теряют своих физических свойств и структуры. Материалы не должны разлагаться с выделением вредных веществ, а также веществ, способствующих коррозии поверхности труб и оборудования (кислоты, щелочи, агрессивные газы, сернистые со­единения и тп.)
По этой причине для изготовления тепловой изоляции не допускается применение котельных шлаков, содержащих в своем составе сернистые соединения.

Так же важным свойством является водопоглощение и гидрофобность ( водоотталкивание) Увлажнение тепловой изоляции резко повышает ее коэффициент теплопроводности вследствие вытеснения воздуха водой. Кроме того, растворенные в воде кислород и углекислота способствуют коррозии наружной поверхность труб и оборудования.
Воздухопроницаемость теплоизоляционною материала так же необходимо учитывать при проектировании и изготовлении теплоизоляционных конструкции, которая должна обладать соответствующей герметичностью, не допуская проникновения влажного воздуха. Теплоизоляционные материалы так же должны обладать повышенным электросопротивлением, не допускающим попадания блуждающих токов к поверхности трубопроводов, особенно при бесканальных прокладках, что вызывает электрокоррозию труб
Теплоизоляционные материалы должны быть достаточно биостойким , те не подвергаться гниению, действию грызунов и изменениям структуры и свойств во времени

Индустриальность в  теплоизоляционных конструкций является одним из главных характеристик теплоизоляционных материалов Покрытие трубопроводов тепловой изоляцией но возможности должно осуществляться на заводах механизированным способом. Это существенно уменьшает трудозатраты, сроки монтажа и повышает качество теплоизоляционной конструкции. Изоляция стыковых соединений, оборудования, ответ­влений и запорной арматуры должна производиться ранее заго­товленными частями с механизированной сборкой на месте мон­тажа.
Теплотехнические свойства теплоизоляционных материалов ухудшаются при увеличении их плотности, поэтому минераловатные изделия не следует подвергать чрезмерному уплотнению Детали крепления тепловой изоляции (бандажи, сетка, проволока, стяжки) должны применять из агрессивно стойких материалов или с соответствующим покрытием, противостоящим коррозии.
И, наконец, теплоизоляционные материалы и конструкции должны иметь невысокую стоимость, применение их должно быть экономически оправданным.

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, ИЗДЕЛИЯ И КОНСТРУКЦИИ ПРИ НАДЗЕМНОЙ И ПОДЗЕМНОЙ ПРОКЛАДКАХ ТЕПЛОВЫХ СЕТЕЙ В КАНАЛАХ

Теплоизоляционные материалы

Основным теплоизоляционным материалом в настоящее время для тепловой изоляции трубопроводов и оборудования теплосетей является минеральная вата и изделия из нее. Минеральная вата представляет собой тонковолокнистый материал, получаемый из расплава горных пород, металлургических шлаков или их смеси. В частности, широкое применение находит базальтовая вата и изделия из нее.

Из минеральной ваты изготавливают путем уплотнения и добавки синтетических или органических связующих или прошивки синтетическими нитями различные маты, плиты, полуцилиндры, сегменты и шнуры.

Маты минераловатные прошивные изготавливаются безобкладочные и в обкладке из асбестовой ткани, стеклоткани, стекловолокнистого холста, гофрированного или кровельного картона; упаковочной или мешочной бумаги.

В зависимости от плотности различают жесткие, полужесткие и мягкие изделия. Из жестких материалов изготавливают цилиндры с разрезом по образующей, полуцилиндры для изоляции труб малых диаметров (до 250 мм) и сегменты - для труб диаметром более 250 мм. Для изоляции труб больших диаметров применяют маты вертикально слоистые, наклеенные на покровный материал, а также маты прошивные из минеральной ваты на металлической сетке.

Для теплоизоляции на месте монтажа стыков трубопроводов, а так же компенсаторов, запорной арматуры изготавливается шнур теплоизоляционный из минеральной ваты, который представляет собой сетчатую трубку, как правило, из стеклоткани, плотно на­полненную минеральной ватой. Теплопроводность изделий из минеральной ваты зависит от марки (по плотности) и колеблется в пределах 0,044...0,049 Вт/(м*°С) при температуре 25°С н 0,067. ..0,072 Вт/(м*°С) при температуре 125°С [4, с. 10. .30]

Стеклянная вата представляет собой тонковолокнистый материал, получаемый из расплавленной стеклянной шихты путем непрерывного вытягивания стекловолокна, а так же центробежно-фильерно-дутьевым способом Из стеклянной вагы методом формования и склеивания синтетическими смолами изготавлива­ют плиты и маты жесткие, полужесткие и мягкие. Изготавлива­ются также маты н плиты без связующего, прошивные стеклян­ной или синтетической нитью [4, с 36...45]

Величина коэффициента теплопроводности изделий из стекловаты так же зависит от плотности и колеблется в пределах 0,041...0,074 Вт/(м-°С)

Находят широкое применение в качестве оберточного и покровного материала холст стекловолокнистый (нетканый рулонный материал на синтетическом связующем) и полотно холстопрошивное из отходов стекловолокна, представляющее собой многослойный холст, прошитый стеклонитями

Вулканитовые изделия получают смешиванием диатомита, негашеной извести и асбеста, формованием и с обработкой в автоклавах. Изготавливают плиты, полуцилиндры и сегменты для изоляции трубопроводов Ду 50 ..400 Теплопроводность изделий от 0,077 Вт/(м*°С) при 25°С до 0,1 Вт/(м-°С)при 125°С[4,табл 1.74] Известково-крсмнистыс материалы -тонкоизмсльчеиная смесь негашеной извести, кремнеземистого материала (диаюмит, трепел, кварцевый песок) и асбеста Выпускают изделия также в виде плит, сегментов и полуцилиндров для изоляции трубопроводов Ду 200.. .400. Теплопроводность материала от 0,058 Вг/(м-°С) при 25°С до 0,077 Вт/(м*°С) при 125°С [4, табл 1 78]

Перлит - пористый материал, получаемый при термической обработке вулканического стекла с включениями полевых шпатов, кварца, плагиоклазов Сырьем для получения вспученного перлита служат и другие силикатные породы вулканического происхождения (обсидиан, пемза, туфы и пр ) В виде щебня и песка перлит используется как заполнитель для приготовления тепло­изоляционных бетонов и других теплоизоляционных изделий, как например, битумоперлит.

Смешивая перлитный песок с цементом и асбестом путем формования получают перлитоцементные изделия в виде полуцилиндров, плит и сегментов. Коэффициент теплопроводности от 0,058 Вт/(м*°С) при 25°С до 128 Вт/(м*°С) при 300°С [4, табл. 1.84].

Все более широкое применение в качестве основного теплоизоляционного слоя находят пенопласты. Пенопласты представляют собой пористый газонаполненный полимерный материал. Технология их изготовления основана на вспенивании полимеров газами, образующимися в результате химических реакций между отдельными смешивающимися компонентами. К пенопла- стам, допускаемым к применению для изоляции теплопроводов, следует отнести фенолформальдегидные пенопласты ФРП-1 и резопен, изготавливаемые из резольной смолы ФРВ-1А или резо- цела и вспенивающего компонента ВАГ-3. Из этого материала изготавливаются цилиндры, полуцилиндры, сегменты, изолиро­ванные фасонные части марок ФРП-1 и резопен [4, табл. 1.112]. Теплопроводность составляет 0,043...0,046 при 20°С.

Также перспективно применение пенополиуретановых материалов, получаемых в результате смешения различных полиэфиров, изоцианатов и вспенивающих добавок [4, табл. 1.114].

Нанесение пенопластовой изоляции производится на заводах путем заливки в формы или набрызга на поверхность труб. Изоляция стыков, фасонных частей, арматуры и др. возможна на месте монтажа трубопровода путем заливки в опалубки или в скор­лупы жидкой вспененной массы с последующим быстрым твер­дением пеноизоляции.

Например, разработанная ВНИПИэнергопром пенополиуретано- вая теплогидроизоляция ППУ 308 Н имеет коэффициент теплопроводности, равный 0,032 Вт/(м*°С) при плотности 40.. .90 кг/м3, наносится на трубы механизированным способом, при этом не тре­буется антикоррозийное покрытие. Наружный слой плотностью 150...400 кг/м3 с пределом прочности на сжатие 50 кг/см2 исполь­зуется в качестве покровного слоя

Теплоизоляционные конструкции

Теплоизоляционные конструкции включают в себя защитное покрытие поверхности труб от коррозии, основной слой изоляции (несколько слоев) и защитное покрытие (покровный слой), предохраняющий основной слой теплоизоляции от механических повреждений, воздействия атмосферных осадков и агрессивных сред. К защитному покрытию относятся также средства и детали крепления покровного слоя и изоляции в целом

Выбор защитного покрытия поверхности труб от коррозии про­изводится в зависимости от способа прокладки, от вида агрессивных воздействий на поверхность и от конструкции тепловой изоляции (прил. 5).

Наиболее распространенным являются масляно-битумные по­крытия по грунту, а также покрытия изолом или бризолом по изоль- ной мастике.
Весьма эффективным является стеклоэмалсвое покрытие, со­стоящее из смеси кварцевого песка, полевого шпата, глинозема, буры и соды. Для повышения сцепления с металлом в состав вводят оксиды никеля, хрома, меди и другие добавки Водный густой состав наносится на поверхность трубы, высушивается и оплавляется на поверхности трубы в кольцевом электромагнит­ном индукторе при температуре около 800°С. Стыковые соеди­нения труб могут покрываться эмалыо при помощи передвиж­ных установок. Недорогим антикоррозийным средством являет­ся покрытие краской ЭФАЖС на эпоксидной смоле Находят применение другие эпоксидные эмали Для теплопроводов, на­ходящихся в жестких температурно-влажностиых условиях, весь­ма эффективна металлизация поверхности алюминием газо1ср- мическим способом Алюминиевое покрытие наносится па по­верхность трубы при помощи газопламенных или электродуго- вых аппаратов газовой или воздушной струей Установка по ме­таллизации алюминием может входить в поточно-механизиро­ванную линию по теплоизоляции труб

Перед нанесением антикоррозионного покрытия поверхность труб зачищается от коррозии и окалины механическими щетками или пескоструйными аппаратами и при необходимости обезжиривается органическими растворителями

Полносборные теплоизоляционные конструкции-наиболее ин­дустриальный вид изоляции - изготавливаются на заводе с противокоррозионной обработкой труб и с креплением покровного слоя поверх основного слоя изоляции Изоляция стыков, фасонных частей, арматуры, компенсаторов и др. производится после монтажа всех элементов участка теплосети из заготовленных на заводе штучных теплоизоляционных изделий.

Сборные комплектные теплоизоляционные конструкции представляют собой полный комплектный набор теплоизоляционных изделий, элементов покрытия и крепежных деталей по размерам и диаметрам.

В приложении 4 приведены конструкции теплоизоляционные полносборные и комплектные для тепловых сетей.

Подвесные теплоизоляционные конструкции - основной способ теплоизоляции теплопроводов надземной и подземной канальной прокладок. Выполняется из изделий минеральной ваты, стекловаты, вулканитовых изделий, известково-кремниевых и других материалов. В приложениях 1 и 2 приведены допускаемые мате­риалы для основного слоя изоляции в зависимости от способа прокладки тепловой сети.

В настоящее время изготовление подвесных теплоизоляционных конструкций, как правило, осуществляется сборкой штучных заготовок с закреплением покровным слоем и деталями крепления. Сборка изоляционных конструкций на объекте монтажа из готовых элементов (сегментов, полос, матов, скорлуп и полуци­линдров) связана с большой затратой ручного труда.

При монтаже теплоизоляции из мягких материалов (плит, матов) при нанесении покровного слоя неизбежно уплотнение материала теплоизоляционного слоя. Это должно учитываться при расчете необходимого количества материала коэффициентом уплотнения (прил. 8).

Для изоляции запорной арматуры находят применение съемные конструкции набивной изоляции в виде тюфяков, заполненных минеральной или стеклянной ватой, перлитом и другим теплоизоляционным материалом. Оболочка тюфяков изготавливает­ся из стеклоткани.

Покровный слой при надземной прокладке на открытом воздухе, как правило, выполняет функции защитного покрытия от проникновения атмосферной влаги. Используется фольгоизол, фоль- горубероид, армопластмассовые материалы, стеклотекстолит, стек­лопластик, сталь листовая углеродистая и листовая оцинкованная, листы, ленты и фольга из алюминиевых сплавов (прил. 6 и 7).

При прокладке в непроходных каналах используют более дешевые армопластмассовые материалы, стеклотекстолит, стеклопластик, стеклорубсроид, рубероид. В тоннелях допускается также применять фольгоизол, фольгорубсроид и алюминиевую фоль­гу дублированную.

При выборе материала для защитного покрытия в зависимости от способа прокладки теплопроводов следует руководствоваться нормами [3, прил 3].

Крепление покровного слоя из листового металла производят самонарезающими винтами, планками или бандажами из упаковочной ленты или лентами из алюминиевого сплава, оболочки из стеклопластика, фольги и других материалов, крепят бандажами из алюминиевой или упаковочной ленты, оцинкованной стальной ленты и проволоки. Покрытие из кровельной стали окрашивакн атмосферостойкими красками.

На рис. 1 приведен пример теплоизоляции трубопровода минераловатными матами.

Теплоивая изоляция трубопроводов

Оберточные конструкции выполняют из прошивных матов или из мягких плит на синтетической связке, которые сшивают поперечными и продольными швами. Покровный слой крепится также, как и в подвесной изоляции
Оберточные конструкции в виде теплоизоляционных жгутов из минеральной или стеклянной ваты после наложения их на поверхность также покрывают защитным слоем. Изолируют стыки, фасонные части, арматуру.
Мастичная изоляция применяется также для теплоизоляции на месте монтажа арматуры и оборудования. Применяют порошкообразные материалы: асбест, асбозурт, совелит. Замешенная на воде масса накладывается на предварительно нагретую изолируемую поверхность вручную. Применяется мастичная изоляция редко, как правило, при ремонтных работах.

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ И КОНСТРУКЦИИ БЕСКАНАЛЬНЫХ ПРОКЛАДОК

Применение бесканальных прокладок привлекаем более простой конструкцией и меньшей стоимостью по сравнению с прокладкой в каналах, однако, в этом случае требуется более тщательная гидроизоляция поверхности теплопровода вплоть до по­мещения изолированной трубы в герметичную оболочку Следу­ет различать конструкции бесканальных прокладок, засыпные, монолитные (литые) и прокладки в предварительно изолирован­ных трубах с герметичными защитными оболочками [5]

Засыпные конструкции характеризуются тем, что смонтирован­ные трубопроводы с антикоррозийным покрытием, уложенные в тран­шею, засыпаются теплоизоляционной массой В качестве засыпок используют керамзитовый гравий, перлит, асфальтоизол Последний характеризуется тем, что при разогреве трубы теплоносителем вок­руг поверхности трубы создается тройной слой: оплавившийся ма­териал, который обволакивает поверхность трубы, являясь антикор­розионным слоем, далее идет пористая спекшаяся масса, являющая­ся теплоизоляционным слоем, и пссюырависобразнын периферий­ный слой засыпки, не изменяющий своих свойств (рис 2) При эксп­луатации увлажняется, в основном, наружный слой, и к поверхнос­ти трубы влага не проникает. Перемещение трубопровода вследствие температурного удлинения происходит в вязком расплавленном слое Теплопроводность асфальтоизола колеблется от 0,085 Вт/(м*°С) в сухом состоянии до 0,2 Вт/(м*°С) в увлажненном [5]

Для приготовления засыпки в виде асфальтоизола могут при­меняться отходы от переработки нефти

Засыпная теплоизоляция из керамзита и перлита рекомендус!- ся при сухих и маловлажных грунтах с низким уровнем грунто­вых вод Для защиты от поверхностных вод обсыпку рекоменду­ется покрывать полиэтиленовой пленкой, изолом, рубероидом н другими рулонными материалами

Находит применение засыпка гидрофобизировапным мелом Перед обработкой в шаровой мельнице мел смешивается с гидро- фобизатором.

Засыпка мела производится в инвентарную опалубку, в кото­рую предварительно укладывается полиэтиленовая пленка Пос­ле обсыпки трубопровода и уплотнения пленкой внахлест укры­вают изолированный трубопровод. Коэффициент теплопроводно­сти гидрофобизированного мела в среднем 0,086 Вт/(м*°С).

Монолитные теплоизоляционные конструкции получили самое широкое распространение.

Примером такой конструкции является армопенобетонная обо­лочка, разработанная и широко применяемая в Ленинграде с 1948 г. Изготовление ее и покрытие труб производится индустриальным способом на специализированных заводах. Армирование, залив­ка пенобетоном в формы и автоклавная обработка производится на поточной линии. В бетон добавляют пенообразователь (сто­лярный клей, канифоль и кальцинированная сода). Гидрозащит­ное покрытие выполняется в виде трех слоев бризола на битум- но-резиновой мастике. Защитный слой - асбсстоцементная шту­катурка по проволочной сетке В других случаях защитный слой выполняется из двух-трех слоев стеклоткани по битумно-резино- вой мастике (рис. 3).
Тепловое удлинение труб в изоляции из армопенобегона про­исходит вместе с изоляцией.
Стыки труб изолируют по месту монтажа скорлупами или сегментами из пенобетона, фенольного норопласта или газобетона.

Порошковая изоляция труб

Теплопроводность пенобетона составляет 0,093.. .0,116 Вт/(м*°С).


Прокладка трубопроводов в изоляции из монолитного армопенобетона

Высокая индустриальность изготовления изоляции в монолит нон оболочке из армопенобетона явилась результатом широкого внедре­ния этою метода строительства бескапальиых теплопроводов

Другим, широко распространенным способом индустриально­го строительства тепловых сетей являются бесканальныс проклад­ки в битумоперлитной оболочке. Изготовление бигумоперлптной смеси, нанесение на поверхность трубы, уплотнение и покрытие рулонным материалом осуществляется на поточной линии

Вследствие малого сцепления бтумоперлига с поверхностью трубы тепловые удлинения происходят внутри изоляции

При этом способе изоляции необходимо осуществляв усилен­ное антикоррозийное покрытие груб с учетом возможности про­никновения влаги к поверхности труб через изоляцию Невысо­кая стоимость изоляционной конструкции и индустриальность ее изготовления явились следствием широкого применения битумо­перлитной теплоизоляции

Теплопроводность материала зависит также от плотности и колеблется в пределах 0,08...0,15 Вт/(м*°С)

Разработано и применяется большое количество материалов для монолитной теплоизоляции при бескапальиых прокладках пено­бетон, пснополимербстон, перлитобетоп, керамзитобетон, асфаль- токерамзитобетон, газосиликат, пеностекло и др

Пенопласты Применение пенопластов как утеплитель в изоляции трубопроводов тепловых сетей сдерживалось вследствие их низкой температуроустойчивости и высоким водопоглощением. Разра­ботаны и применяются композиционные полимерные органичес­кие материалы с различными добавками, значительно улучшаю­щие их теплотехнические качества.

Например, ЛенЗНИИЭП предложил фенольный поропласт ФЛ на основе фенолформальдегидной смолы, керосинового контак­та Петрова, мочевины, поверхностно-активного вещества ОП-7 алюминиевого порошка и ортофосфорной кислоты [5, с. 100]. Однако из-за высокого водопоглощения требуется хорошая гид­роизоляция поверхности труб. Разработанная технология меха­низированного покрытия труб изоляционным и гидроизоляцион­ным слоем позволяет достичь высокой степени индустриализа­ции строительства тепловых сетей. Благодаря высокой адгезии поро- пласта с поверхностью трубы тепловые удлинения происходят со­вместно с изоляцией.

ВНИПИэнергопромом налажено производство теплопроводов в изоляции из пенополимербетона (ППБИ) методом формования и напыления ППБИ представляет собой новый вид теплогидроизо- ляции на основе химических органических продуктов и минераль­ных наполнителей. Предназначается для изоляции бесканально проложенных теплопроводов с температурой теплоносителя до 150°С.

Конструкция изоляции монолитная трехслойная: антикоррозион­ный слой, плотностью 800.. .1000 кг/м3, толщиной 3.. .8 мм, средний теплоизоляционный плотностью 200.. .300 кг/м3, X = 0,07 Вт/(м*°С) (толщина определяется расчетом) и наружный гидрозащитный слой высокой прочности. Все три слоя образуются одновременно при формовании за один цикл.

Высокая индустриальность изготовления конструкции позво­ляет вести монтаж трубопроводов "с колес".


Материалы для изоляции труб

Работает на: Amiro CMS